Перевод: со всех языков на английский

с английского на все языки

Documents on the Invention of Magnetic Recording in 1878

  • 1 Smith, Oberlin

    [br]
    b. 22 March 1840 Cincinnati, Ohio, USA
    d. 18 July 1926
    [br]
    American mechanical engineer, pioneer in experiments with magnetic recording.
    [br]
    Of English descent, Smith embarked on an education in mechanical engineering, graduating from West Jersey Academy, Bridgeton, New Jersey, in 1859. In 1863 he established a machine shop in Bridgeton, New Jersey, that became the Ferracute Machine Company in 1877, eventually specializing in the manufacture of presses for metalworking. He seems to have subscribed to design principles considered modern even in the 1990s, "always giving attention to the development of artistic form in combination with simplicity, and with massive strength where required" (bibliographic reference below). He was successful in his business, and developed and patented a large number of mechanical constructions.
    Inspired by the advent of the phonograph of Edison, in 1878 Smith obtained the tin-foil mechanical phonograph, analysed its shortcomings and performed some experiments in magnetic recording. He filed a caveat in the US Patent Office in order to be protected while he "reduced the invention to practice". However, he did not follow this trail. When there was renewed interest in practical sound recording and reproduction in 1888 (the constructions of Berliner and Bell \& Tainter), Smith published an account of his experiments in the journal Electrical World. In a corrective letter three weeks later it is clear that he was aware of the physical requirements for the interaction between magnetic coil and magnetic medium, but his publications also indicate that he did not as such obtain reproduction of recorded sound.
    Smith did not try to develop magnetic recording, but he felt it imperative that he be given credit for conceiving the idea of it. When accounts of Valdemar Poulsen's work were published in 1900, Smith attempted to prove some rights in the invention in the US Patent Office, but to no avail.
    He was a highly respected member of both his community and engineering societies, and in later life became interested in the anti-slavery cause that had also been close to the heart of his parents, as well as in the YMCA movement and in women's suffrage.
    [br]
    Bibliography
    Apart from numerous technical papers, he wrote the book Press Working of Metals, 1896. His accounts on the magnetic recording experiments were "Some possible forms of phonograph", Electrical World (8 September 1888): 161 ff, and "Letter to the Editor", Electrical World (29 September 1888): 179.
    Further Reading
    F.K.Engel, 1990, Documents on the Invention of Magnetic Recording in 1878, New York: Audio Engineering Society, Reprint no. 2,914 (G2) (a good overview of the material collected by the Oberlin Smith Society, Bridgeton, New Jersey, in particular as regards the recording experiments; it is here that it is doubted that Valdemar Poulsen developed his ideas independently).
    GB-N

    Biographical history of technology > Smith, Oberlin

  • 2 Poulsen, Valdemar

    [br]
    b. 23 November 1869 Copenhagen, Denmark
    d. 23 July 1942 Gentofte, Denmark
    [br]
    Danish engineer who developed practical magnetic recording and the arc generator for continuous radio waves.
    [br]
    From an early age he was absorbed by phenomena of physics to the exclusion of all other subjects, including mathematics. When choosing his subjects for the final three years in Borgedydskolen in Christianshavn (Copenhagen) before university, he opted for languages and history. At the University of Copenhagen he embarked on the study of medicine in 1889, but broke it off and was apprenticed to the machine firm of A/S Frichs Eftf. in Aarhus. He was employed between 1893 and 1899 as a mechanic and assistant in the laboratory of the Copenhagen Telephone Company KTAS. Eventually he advanced to be Head of the line fault department. This suited his desire for experiment and measurement perfectly. After the invention of the telegraphone in 1898, he left the laboratory and with responsible business people he created Aktieselskabet Telegrafonen, Patent Poulsen in order to develop it further, together with Peder Oluf Pedersen (1874– 1941). Pedersen brought with him the mathematical background which eventually led to his professorship in electronic engineering in 1922.
    The telegraphone was the basis for multinational industrial endeavours after it was demonstrated at the 1900 World's Exhibition in Paris. It must be said that its strength was also its weakness, because the telegraphone was unique in bringing sound recording and reproduction to the telephone field, but the lack of electronic amplifiers delayed its use outside this and the dictation fields (where headphones could be used) until the 1920s. However, commercial interest was great enough to provoke a number of court cases concerning patent infringement, in which Poulsen frequently figured as a witness.
    In 1903–4 Poulsen and Pedersen developed the arc generator for continuous radio waves which was used worldwide for radio transmitters in competition with Marconi's spark-generating system. The inspiration for this work came from the research by William Duddell on the musical arc. Whereas Duddell had proposed the use of the oscillations generated in his electric arc for telegraphy in his 1901 UK patent, Poulsen contributed a chamber of hydrogen and a transverse magnetic field which increased the efficiency remarkably. He filed patent applications on these constructions from 1902 and the first publication in a scientific forum took place at the International Electrical Congress in St Louis, Missouri, in 1904.
    In order to use continuous waves efficiently (the high frequency constituted a carrier), Poulsen developed both a modulator for telegraphy and a detector for the carrier wave. The modulator was such that even the more primitive spark-communication receivers could be used. Later Poulsen and Pedersen developed frequency-shift keying.
    The Amalgamated Radio-Telegraph Company Ltd was launched in London in 1906, combining the developments of Poulsen and those of De Forest Wireless Telegraph Syndicate. Poulsen contributed his English and American patents. When this company was liquidated in 1908, its assets were taken over by Det Kontinentale Syndikat for Poulsen Radio Telegrafi, A/S in Copenhagen (liquidated 1930–1). Some of the patents had been sold to C.Lorenz AG in Berlin, which was very active.
    The arc transmitting system was in use worldwide from about 1910 to 1925, and the power increased from 12 kW to 1,000 kW. In 1921 an exceptional transmitter rated at 1,800 kW was erected on Java for communications with the Netherlands. More than one thousand installations had been in use worldwide. The competing systems were initially spark transmitters (Marconi) and later rotary converters ( Westinghouse). Similar power was available from valve transmitters only much later.
    From c. 1912 Poulsen did not contribute actively to further development. He led a life as a well-respected engineer and scientist and served on several committees. He had his private laboratory and made experiments in the composition of matter and certain resonance phenomena; however, nothing was published. It has recently been suggested that Poulsen could not have been unaware of Oberlin Smith's work and publication in 1888, but his extreme honesty in technical matters indicates that his development was indeed independent. In the case of the arc generator, Poulsen was always extremely frank about the inspiration he gained from earlier developers' work.
    [br]
    Bibliography
    1899, British patent no. 8,961 (the first British telegraphone patent). 1903, British patent no. 15,599 (the first British arc-genera tor patent).
    His scientific publications are few, but fundamental accounts of his contribution are: 1900, "Das Telegraphon", Ann. d. Physik 3:754–60; 1904, "System for producing continuous oscillations", Trans. Int. El. Congr. St. Louis, Vol. II, pp. 963–71.
    Further Reading
    A.Larsen, 1950, Telegrafonen og den Traadløse, Ingeniørvidenskabelige Skrifter no. 2, Copenhagen (provides a very complete, although somewhat confusing, account of Poulsen's contributions; a list of his patents is given on pp. 285–93).
    F.K.Engel, 1990, Documents on the Invention of Magnetic Re cor ding in 1878, New York: Audio Engineering Society, reprint no. 2,914 (G2) (it is here that doubt is expressed about whether Poulsen's ideas were developed independently).
    GB-N

    Biographical history of technology > Poulsen, Valdemar

См. также в других словарях:

  • Technological and industrial history of Canada — The technological and industrial history of Canada encompasses the country s development in the areas of transportation, communication, energy, materials, public works, public services (health care), domestic/consumer and defense technologies.… …   Wikipedia

  • printing — /prin ting/, n. 1. the art, process, or business of producing books, newspapers, etc., by impression from movable types, plates, etc. 2. the act of a person or thing that prints. 3. words, symbols, etc., in printed form. 4. printed material. 5.… …   Universalium

  • arts, East Asian — Introduction       music and visual and performing arts of China, Korea, and Japan. The literatures of these countries are covered in the articles Chinese literature, Korean literature, and Japanese literature.       Some studies of East Asia… …   Universalium

  • technology, history of — Introduction       the development over time of systematic techniques for making and doing things. The term technology, a combination of the Greek technē, “art, craft,” with logos, “word, speech,” meant in Greece a discourse on the arts, both… …   Universalium

  • Edison, Thomas Alva — born Feb. 11, 1847, Milan, Ohio, U.S. died Oct. 18, 1931, West Orange, N.J. U.S. inventor. He had very little formal schooling. He set up a laboratory in his father s basement at age 10; at 12 he was earning money selling newspapers and candy on… …   Universalium

  • MUSIC — This article is arranged according to the following outline: introduction written sources of direct and circumstantial evidence the material relics and iconography notated sources oral tradition archives and important collections of jewish music… …   Encyclopedia of Judaism

  • Diffusion of technology in Canada — This article outlines the history of the diffusion or spread of technology in Canada. Technologies chosen for treatment here include, in rough order, transportation, communication, energy, materials, industry, public works, public services… …   Wikipedia

  • Typewriter — Mechanical desktop typewriters, such as this Underwood Five, were long time standards of government agencies, newsrooms, and offices …   Wikipedia

  • Russia — /rush euh/, n. 1. Also called Russian Empire. Russian, Rossiya. a former empire in E Europe and N and W Asia: overthrown by the Russian Revolution 1917. Cap.: St. Petersburg (1703 1917). 2. See Union of Soviet Socialist Republics. 3. See Russian… …   Universalium

  • Scientific method — …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»